Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 48: 109053, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37006402

RESUMO

As the most important bovine ectoparasite, the southern cattle tick Rhipicephalus microplus transmits lethal cattle diseases such as babesiosis and anaplasmosis, costing the global livestock industry billions of dollars annually. To control cattle ticks, preventive treatment of cattle with pesticides is a common practice; however, after decades of chemical treatment, pesticide resistance has arisen in cattle ticks, rendering most formulations ineffective over time. Facing the perspective of running out of effective chemical treatments against R. microplus, research on biocontrol alternatives is necessary. Acaro-pathogenic microorganisms isolated from different developmental stages of R. microplus offer potential as biocontrol agents. Aspergillus flavus strain INIFAP-2021, isolated from naturally infected cattle ticks, produced high levels of mobility and mortality in the tick population during experimental infections. The whole genome of the fungi was sequenced using the DNBSEQ platform by BGI. The genome was assembled using SOAPaligner, and A. flavus NRRL3357 was used as the reference genome; the complete genome contained eight pairs of chromosomes and 36.9 Mb with a GC content of 48.03%, exhibiting 11482 protein-coding genes. The final genome assembly was deposited at GenBank as a bio project under accession number PRJNA758689, and supplementary material is accessible through Mendeley DOI: 10.17632/mt8yxch6mz.1.

2.
Viruses ; 14(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35632700

RESUMO

We have demonstrated for the first time a comprehensive evolutionary analysis of the Mexican lineage H5N2 avian influenza virus (AIV) using complete genome sequences (n = 189), from its first isolation in 1993 until 2019. Our study showed that the Mexican lineage H5N2 AIV originated from the North American wild bird gene pool viruses around 1990 and is currently circulating in poultry populations of Mexico, the Dominican Republic, and Taiwan. Since the implementation of vaccination in 1995, the highly pathogenic AIV (HPAIV) H5N2 virus was eradicated from Mexican poultry in mid-1995. However, the low pathogenic AIV (LPAIV) H5N2 virus has continued to circulate in domestic poultry populations in Mexico, eventually evolving into five distinct clades. In the current study, we demonstrate that the evolution of Mexican lineage H5N2 AIVs involves gene reassortments and mutations gained over time. The current circulating Mexican lineage H5N2 AIVs are classified as LPAIV based on the amino acid sequences of the hemagglutinin (HA) protein cleavage site motif as well as the results of the intravenous pathogenicity index (IVPI). The immune pressure from vaccinations most likely has played a significant role in the positive selection of antigenic drift mutants within the Mexican H5N2 AIVs. Most of the identified substitutions in these viruses are located on the critical antigenic residues of the HA protein and as a result, might have contributed to vaccine failures. This study highlights and stresses the need for vaccine updates while emphasizing the importance of continued molecular monitoring of the HA protein for its antigenic changes compared to the vaccines used.


Assuntos
Vírus da Influenza A Subtipo H5N2 , Vírus da Influenza A , Influenza Aviária , Animais , Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/genética , México , Filogenia , Aves Domésticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...